Matrix‐M adjuvanted virosomal H5N1 vaccine confers protection against lethal viral challenge in a murine model
نویسندگان
چکیده
BACKGROUND A candidate pandemic influenza H5N1 vaccine should provide rapid and long-lasting immunity against antigenically drifted viruses. As H5N1 viruses are poorly immunogenic, this may require a combination of immune potentiating strategies. An attractive approach is combining the intrinsic immunogenicity of virosomes with another promising adjuvant to further boost the immune response. As regulatory authorities have not yet approved a surrogate correlate of protection for H5N1 vaccines, it is important to test the protective efficacy of candidate H5N1 vaccines in a viral challenge study. OBJECTIVES This study investigated in a murine model the protective efficacy of Matrix-M adjuvanted virosomal influenza H5N1 vaccine against highly pathogenic lethal viral challenge. METHODS Mice were vaccinated intranasally (IN) or intramuscularly (IM) with 7·5 μg and 30 μg HA of inactivated A/Vietnam/1194/2004 (H5N1) (NIBRG-14) virosomal adjuvanted vaccine formulated with or without 10 μg of Matrix-M adjuvant and challenged IN with the highly pathogenic A/Vietnam/1194/2004 (H5N1) virus. RESULTS AND CONCLUSIONS IM vaccination provided protection irrespective of dose and the presence of Matrix-M adjuvant, whilst the IN vaccine required adjuvant to protect against the challenge. The Matrix-M adjuvanted vaccine induced a strong and cross-reactive serum antibody response indicative of seroprotection after both IM and IN administration. In addition, the IM vaccine induced the highest frequencies of influenza specific CD4+ and CD8+ T-cells. The results confirm a high potential of Matrix-M adjuvanted virosomal vaccines and support the progress of this vaccine into a phase 1 clinical trial.
منابع مشابه
Protection against H5N1 Influenza Virus Induced by Matrix-M Adjuvanted Seasonal Virosomal Vaccine in Mice Requires Both Antibodies and T Cells.
BACKGROUND It remains important to develop the next generation of influenza vaccines that can provide protection against vaccine mismatched strains and to be prepared for potential pandemic outbreaks. To achieve this, the understanding of the immunological parameters that mediate such broad protection is crucial. METHOD In the current study we assessed the contribution of humoral and cellular...
متن کاملCross-Protection against Lethal H5N1 Challenge in Ferrets with an Adjuvanted Pandemic Influenza Vaccine
BACKGROUND Unprecedented spread between birds and mammals of highly pathogenic avian influenza viruses (HPAI) of the H5N1 subtype has resulted in hundreds of human infections with a high fatality rate. This has highlighted the urgent need for the development of H5N1 vaccines that can be produced rapidly and in sufficient quantities. Potential pandemic inactivated vaccines will ideally induce su...
متن کاملComparative Efficacy of Hemagglutinin, Nucleoprotein, and Matrix 2 Protein Gene-Based Vaccination against H5N1 Influenza in Mouse and Ferret
Efforts to develop a broadly protective vaccine against the highly pathogenic avian influenza A (HPAI) H5N1 virus have focused on highly conserved influenza gene products. The viral nucleoprotein (NP) and ion channel matrix protein (M2) are highly conserved among different strains and various influenza A subtypes. Here, we investigate the relative efficacy of NP and M2 compared to HA in protect...
متن کاملMatrix M H5N1 Vaccine Induces Cross-H5 Clade Humoral Immune Responses in a Randomized Clinical Trial and Provides Protection from Highly Pathogenic Influenza Challenge in Ferrets
BACKGROUND AND METHODS Highly pathogenic avian influenza (HPAI) viruses constitute a pandemic threat and the development of effective vaccines is a global priority. Sixty adults were recruited into a randomized clinical trial and were intramuscularly immunized with two virosomal vaccine H5N1 (NIBRG-14) doses (21 days apart) of 30 μg HA alone or 1.5, 7.5 or 30 μg HA adjuvanted with Matrix M. The...
متن کاملH5N1 Whole-Virus Vaccine Induces Neutralizing Antibodies in Humans Which Are Protective in a Mouse Passive Transfer Model
BACKGROUND Vero cell culture-derived whole-virus H5N1 vaccines have been extensively tested in clinical trials and consistently demonstrated to be safe and immunogenic; however, clinical efficacy is difficult to evaluate in the absence of wide-spread human disease. A lethal mouse model has been utilized which allows investigation of the protective efficacy of active vaccination or passive trans...
متن کامل